Regression Review for Multi-Level Modeling

Paul E. Johnson

1 Department of Political Science

2 Center for Research Methods and Data Analysis, University of Kansas

2015
The Linear model

Assume

\[y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \ i = 1, \ldots, N \] \hspace{1cm} (1)

where

- \(\beta_0 \) and \(\beta_1 \) are unknown real numbers, and
- \(\varepsilon_i \) is a random “disturbance”. Typically, we assume
 - Expected value is 0 \(E[\varepsilon_i] = 0 \) and
 - Homogeneous variance, \(Var[\varepsilon_i^2] \) is the same value for all \(i \). Usually, we call that \(\sigma_\varepsilon^2 \).
Most people don’t think about subscript i

Sub i means the claim is true for any observation, so

- It is true for case number 1

$$y_1 = \beta_0 + \beta_1 x_1 + \varepsilon_1$$

- And case number 2

$$y_2 = \beta_0 + \beta_1 x_2 + \varepsilon_2$$

- And case number 467

$$y_{467} = \beta_0 + \beta_1 x_{467} + \varepsilon_{467}$$
The unknowns that must be estimated are β_0, β_1, AND σ^2_{ε}

Estimates $\hat{\beta}_0$, $\hat{\beta}_1$ of coefficients have hats

The **predicted value** (estimate of $E[y_i|x_i]$) also has a hat

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

One might consider the residuals, $y_i - \hat{y}_i$ as estimates of the error term ε_i
Everybody is interested in $\hat{\beta}_0$ and $\hat{\beta}_1$

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \ldots, N$$

- A 1 unit increase in x_i is associated with a β_1 change in the expected value of y_i
We should be more interested in the error term

\[y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \ldots, N \]

What do assume?

- The probability distribution of the error term has to be centered on 0.
- To repeat, the expected value of \(\varepsilon_i \) is 0, \(E[\varepsilon_i] = 0 \).
- What if \(E[\varepsilon_i] = 2 \)? Not a problem.
 - Squish those 2 units into the \(\beta_0 \)
 - and re-hypothesize a new error term \(\varepsilon_i - 2 \)
We should be more interested in the error term

We also assume,

- the draws from the ε_i random data generator are homogeneous, they are from the SAME random number generating process.
- That’s usually summarized as “homogeneous variance”, or homoskedasticity. The error variance of case 1 is the same as case 2, is the same as case 467:
 - $\text{Var}[\varepsilon_i] = \sigma^2_\varepsilon$ (note same for all i)
Where do estimates come from?

- Ordinary Least Squares.
 - Adjust the values to minimize the sum of squared errors:

 \[
 \text{Choose } \hat{\beta}_j \text{ as Minimizers of } S(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
 \]

- The estimated variance of the error term, \(\hat{\sigma}_\varepsilon^2 \), often referred to as the Mean Squared Error (MSE)
- \(\sqrt{\sigma}_\varepsilon^2 \) is the Root MSE (RMSE), or sometimes “residual standard error” or just “sigma”
Theory: \(y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i \)

Predicted value: \(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} \)

Objective function. Choose \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2 \) to minimize

\[
S(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\]

First Order Conditions:
Calculate partial derivative for each parameter, set them equal to 0 (finding the “bottom of the bowl”).

\[
\frac{\partial S}{\partial \beta_0} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \hat{\beta}_2 x_{2i}) = 0
\]

\[
\frac{\partial S}{\partial \beta_1} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \hat{\beta}_2 x_{2i}) x_{1i} = 0
\]

\[
\frac{\partial S}{\partial \beta_2} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \hat{\beta}_2 x_{2i}) x_{2i} = 0
\]
2 is a nice round number ...

These imply the **normal equations** (one for each estimated parameter):

\[
\begin{align*}
\sum y_i &= N\hat{\beta}_0 + (\sum x_1i)\hat{\beta}_1 + (\sum X_2i)\hat{\beta}_2 \\
\sum y_ix_1i &= (\sum x_1i)\hat{\beta}_0 + (\sum x_1^2i)\hat{\beta}_1 + (\sum x_1ix_2i)\hat{\beta}_2 \\
\sum y_ix_2i &= (\sum x_2i)\hat{\beta}_0 + (\sum x_1ix_2i)\hat{\beta}_1 + (\sum x_2^2i)\hat{\beta}_2
\end{align*}
\]

- One equation per parameter
- Note those sums are “just numbers” that come out of the data
- We can “do the math thing” to solve for the \(\hat{\beta}_j\), but it will take a lot of time. I’ve seen the solutions written out when there are 3 parameters to estimate, but never when there are more than 3.
- Estimate a regression with 10 variables, write out 10 equations? (ugh...)
The Design Matrix Has Many Columns

- Consider a multiple regression with a lot of numeric predictors

\[y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \beta_5 X_{5i} + \beta_6 X_{6i} + \beta_7 X_{7i} + \varepsilon_i \]

- The “design matrix” has a column of 1’s plus a column for each variables.

\[
X = \begin{bmatrix}
\text{intercept} & X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 \\
1 & 19 & 1 & 0.1 & 1 & 0 & 22 & 155 \\
1 & 22 & 2 & 1.1 & 0 & 1 & 42 & 199 \\
... & ... & ... & ... & ... & ... & ... & ... \\
1 & 8 & 4 & 0.2 & 1 & 1 & 77 & 77
\end{bmatrix}
\]

- **Design matrix**: numeric representation of all variables for which coefficient estimates are sought.
The Design Matrix Has Many Columns

- In R, run a multiple regression, something large like this, where X1, X2, and X3 are numeric, and X4 is categorical

\[
m1 \leftarrow \text{lm}(y \sim X1 + X2 + X3 + X4, \text{data} = \text{dat})
\]

- The regression program should manufactures a design matrix that has dummy variables for several categories of variable X4

- R’s model.matrix function can be used to review the design matrix, we see something like

\[
X = \begin{bmatrix}
\text{intercept} & X1 & X2 & X3 & X4cat1 & X4cat2 & X4cat3 & X4cat4 \\
1 & 19 & 1 & 0.1 & 1 & 0 & 0 & 0 \\
1 & 22 & 2 & 1.1 & 0 & 1 & 0 & 0 \\
\vdots & \vdots \\
1 & 8 & 4 & 0.2 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

(4)
Regression Review for Multi-Level Modeling

Multiple Regression

Regression Assumptions

- Your challenge: Estimate each β_j and σ^2_e

1. Specification:

$$y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_3 + \beta_4 X_{4cat1i} + \beta_5 X_{4cat2i} + \beta_6 X_{4cat3i} + \beta_7 X_{4cat4i} + e_i$$

2. Error is an unmeasured variable with pleasant properties

 1. $E[e_i] = 0$, so that observed y_i is scattered above and below “true” value
 2. homogeneous (same for all i) variance

 $$E[e_i] = 0, E[e_i^2] = \sigma^2_e.$$
Matrix Algebra

- There is a separate presentation about this named “matrices”
Regression in Matrices

\[Y = X\beta + e \]

<table>
<thead>
<tr>
<th>dep. var</th>
<th>indep var</th>
<th>slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[y = \begin{bmatrix} y_1 \ y_2 \ \vdots \ y_N \end{bmatrix}]</td>
<td>[X = \begin{bmatrix} 1 & x_{11} & x_{21} \ 1 & x_{12} & x_{22} \ \vdots & \vdots & \vdots \ 1 & x_{1N} & x_{2N} \end{bmatrix}]</td>
<td>[\hat\beta = \begin{bmatrix} \hat\beta_0 \ \hat\beta_1 \ \hat\beta_2 \end{bmatrix}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>residuals</th>
<th>predicted values</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\hat{e} = y - \hat{y} = \begin{bmatrix} y_1 \ y_2 \ \vdots \ y_N \end{bmatrix} - \begin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ \vdots \ \hat{y}_N \end{bmatrix}]</td>
<td>[\hat{y} = \begin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ \vdots \ \hat{y}_N \end{bmatrix} = X\hat{\beta}]</td>
</tr>
</tbody>
</table>
Regression in Matrices ...

- y is a single column, the same as an $(N \times 1)$ matrix
- X is an $(N \times p)$ rectangular matrix
- e is $(N \times 1)$
- With 2 predictors,

$$y = X\beta + e$$

is short for:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} \\ 1 & x_{12} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{1N} & x_{2N} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$
The assumption about the error term

\[\text{Var}(e) = \begin{bmatrix} \sigma^2_e & 0 & 0 & 0 & 0 \\ 0 & \sigma^2_e & 0 & 0 \\ 0 & 0 & \sigma^2_e & 0 \\ 0 & 0 & 0 & \cdot & 0 \\ 0 & 0 & 0 & \cdot & \sigma^2_e \end{bmatrix} = \sigma^2_e \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \cdot & 1 \end{bmatrix} \]
Estimation as Minimization (of the Sum of Squared residuals)

- In scalar math, we’d write the objective as the minimization of a sum-of-squared errors

\[
S(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_{p-1}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\]

- Various styles using matrices.

1. Multiplication of residual vectors

\[
(y - \hat{y})^T (y - \hat{y})
\]

which is

\[
(y - X\hat{\beta})^T (y - X\hat{\beta})
\]

2. Norm notation
Estimation as Minimization (of the Sum of Squared residuals) ...

Norm: a measure of a vector’s magnitude

\[
\frac{1}{2} \| y - \hat{y} \|^2_2
\]

There are many different “norms” that might measure a vector’s “magnitude.” The L2 norm is used here, which uses the Pythagorean theorem

\[
\| x \|_2 = \sqrt{x_1^2 + x_2^2 + x_3^2 + \ldots + x_N^2}
\]
Estimation: Derivation of the "Normal Equations"

- For any guess about
 \[
 \beta = \begin{bmatrix}
 \beta_0 \\
 \beta_1 \\
 \vdots \\
 \beta_p
 \end{bmatrix}
 \]
 we can calculate \(X\beta \)

- So imagine putting in guesses of \(\beta \) that make the sum of squared errors as small as possible

- The sum of squared errors
 \[
 S(\beta) = (y - \hat{y})^T(y - \hat{y}) = (y - X\hat{\beta})(y - X\hat{\beta})
 \]
 \((6) \)

The ordinary least squares solution is the value of \(\beta \) which minimizes that,

\[
\hat{\beta}^{OLS} = \argmin_{\beta} (y - \hat{y})(y - \hat{y})
\]
The first order conditions have one row for each coefficient being estimated. When we write out the FOC, one after another, we have the normal equations

\[
\frac{\partial S}{\partial \beta_0} = 0 \\
\frac{\partial S}{\partial \beta_1} = 0 \\
\frac{\partial S}{\partial \beta_2} = 0 \\
\frac{\partial S}{\partial \beta_3} = 0 \\
\vdots
\]

First Order Conditions with 2 predictors:
Matrix View of Multiple Regression

Estimation: Derivation of the "Normal Equations" ...

\[
\frac{\partial S}{\partial \beta_0} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 i - \hat{\beta}_2 x_2 i) = 0 \\
\frac{\partial S}{\partial \beta_1} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 i - \hat{\beta}_2 x_2 i) x_1 i = 0 \\
\frac{\partial S}{\partial \beta_2} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 i - \hat{\beta}_2 x_2 i) x_2 i = 0 \\
\]

The Normal Equations for a regression with an intercept and 2 predictors

\[
\sum y_i = N \hat{\beta}_0 + (\sum x_1 i) \hat{\beta}_1 + (\sum X_2 i) \hat{\beta}_2 \\
\sum y_i x_1 i = (\sum x_1 i) \hat{\beta}_0 + (\sum x_1^2 i) \hat{\beta}_1 + (\sum x_1 i x_2 i) \hat{\beta}_2 \\
\sum y_i x_2 i = (\sum x_2 i) \hat{\beta}_0 + (\sum x_1 i x_2 i) \hat{\beta}_1 + (\sum x_2^2 i) \hat{\beta}_2 \\
\]
Estimation: Derivation of the "Normal Equations" ...

- Re-group to see how we will view that as a matrix equation with 3 rows:

\[
\begin{bmatrix}
\sum y_i \\
\sum y_i x_1 \\
\sum y_i x_2 \\
\end{bmatrix}
= \begin{bmatrix}
N & \sum x_1 & \sum x_2 \\
\sum x_1 & \sum x_1^2 & \sum x_1 x_2 \\
\sum x_2 & \sum x_1 x_2 & \sum x_2^2 \\
\end{bmatrix}
\begin{bmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\hat{\beta}_2 \\
\end{bmatrix}
\]

Which is

\[X^T y = (X^T X) \hat{\beta}\]

(9)
Often described as a Case for Matrix Inversion

- If we could calculate \((X^TX)^{-1}\), we would multiply both sides of the previous:

\[
(X^TX)^{-1}X^Ty = (X^TX)^{-1}(X^TX) \hat{\beta}
\]

\[
(X^TX)^{-1}X^Ty = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \hat{\beta}
\]

\[
(X^TX)^{-1}X^Ty = \hat{\beta}
\]

- I was taught in the 1970s that computer programs calculate regression in that way.
- Today, that would be considered poor numerical linear algebra.
 - Even forming \(X^TX\) involves rounding error that gives us gray hair.
- Today, these calculations are usually done by decomposing \(X\) into numerically more-stable submatrices. See Wood, S (2006). *Generalized Additive Models.*
Partitioned Predictor Matrix

- Reminder. Treating all of the X’s as a big block, the estimate is the solution to the normal equation

$$
\begin{bmatrix}
\hat{\beta}_0 \\
\vdots \\
\hat{\beta}_p
\end{bmatrix} = X^T y
$$

- It is allowed, however, to separate the predictors into 2 groups, say X_1 and X_2, and think of the regression model as

$$y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon$$

- The **normal equation** for the partitioned problem is

$$
\begin{bmatrix}
X_1^T X_1 & X_1^T X_2 \\
X_2^T X_1 & X_2^T X_2
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\beta_2
\end{bmatrix} =
\begin{bmatrix}
X_1^T y \\
X_2^T y
\end{bmatrix}
$$
The coefficient estimate vector $\hat{\beta}$ from the original model is just the two separate pieces stacked together, $[\beta_1, \beta_2]$.

Note that if the 2 blocks of predictors are completely uncorrelated—Orthogonal, then $X_1^T X_2$ will be a big block of 0s. The two bits can be solved separately.

If the blocks are not orthogonal, then we could think of solving this as 2 simultaneous equations:

\[
X_1^T X_1 \beta_1 + X_1^T X_2 \beta_2 = X_1^T y \\
X_2^T X_1 \beta_1 + X_2^T X_2 \beta_2 = X_2^T y
\]

Put a bookmark on this and remember it when we come to Henderson’s Mixed Model Equations (MME)
Evaluate Variance

- Important to figure out how precise our estimated slopes might be
- Want to conduct hypothesis tests, one popular way is the ratio $\hat{\beta}_j / \text{s.e.}(\hat{\beta}_j)$
- The standard error is the square root of the estimated variance of $\hat{\beta}$, which is now our topic.
- The “true” variance/covariance matrix of the estimator $\hat{\beta}$ is found by solving

$$ \text{Var}(\hat{\beta}) = E[(\hat{\beta} - \beta)^T(\hat{\beta} - \beta) | X] $$

which boils down to a very simple:

$$ \text{Var}(\hat{\beta}) = \sigma^2_e (X^T X)^{-1} \quad (10) $$

- That’s a theoretical quantity, because σ^2_e is an unknown (to be estimated).
Evaluate Variance ...

- Question: How did we end up with a simple expression like (10) to begin with?
- Answer: Aggressive application of several simplifying assumptions.
- There's a nice description of it in Green's Econometric Analysis, 6th ed (p. 150). We want

\[
Var(\hat{\beta}) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)|X]
\]

- Insert \((X^T X)^{-1} X^T y\) in place of \(\hat{\beta}\). Because the \(X\) is treated as fixed, this whole thing simplifies to

\[
(X^T X)^{-1} X^T \text{Var}(\varepsilon) X (X^T X)^{-1}
\]

(11)
Evaluate Variance …

- The ordinary least squared setup implies

\[
\text{Var}(\varepsilon) = \sigma^2_\varepsilon I = \sigma^2_\varepsilon \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- Put that in the middle of (11), and look how the formula simplifies

\[
\text{Var}(\hat{\beta}) = (X^T X)^{-1} X^T \sigma^2_\varepsilon I X (X^T X)^{-1} \\
= \sigma^2_\varepsilon (X^T X)^{-1} X^T X (X^T X)^{-1} \\
= \sigma^2_\varepsilon (X^T X)^{-1} (X^T X)(X^T X)^{-1} \\
= \sigma^2_\varepsilon (X^T X)^{-1} \\
\] (12)
Evaluate Variance ...

- The residuals from the fitted model, $y - \hat{y}$, are the central element in this.
- The maximum likelihood estimate of the variance is simply the sum of squared residuals divided by N

$$\hat{\sigma}_e^2^{MLE} = \frac{1}{N} (y - \hat{y})^T (y - \hat{y})$$

- There are some obvious shortcomings in this.
 - Intuition: as you add in more predictors, $(y - \hat{y})$ always gets smaller. You always “improve” the model by adding nearly irrelevant predictors.
 - Difference between R^2 and adjusted R^2 flows from this
 - Theoretical problem: The MLE is “biased”. That means, it is, on average, incorrect.
Evaluate Variance ...

- The alternative estimator, is a “restricted maximum likelihood estimator”. We are used to this, it is a bias corrected version.

\[
\hat{\sigma}_e^2^{REML} = MSE = \frac{1}{N - p} (y - \hat{y})^T (y - \hat{y})
\]

(13)

- The correction is changing the denominator from \(N \) to \((N - p) \).

- This is important in the debate in multi-level modeling, since MLM is mostly about estimating variances.

- We use an estimated variance of \(\hat{\beta} \) (two hats! Estimated variance of Estimated coefficients!)

\[
\text{Var}(\hat{\beta}) = \hat{\sigma}_e^2 (X^T X)^{-1}
\]

(14)

- The square root of the diagonal elements of \(\text{Var}(\hat{\beta}) \) is commonly called the “standard error” of \(\hat{\beta} \). It is the denominator in t-tests.
OLS relies on the simplifying assumptions to derive the variance formula and to make it work with estimated error variance.

What if there are covariances among the observations?

$$\text{Var}(\varepsilon) = \begin{bmatrix}
\sigma_1^2 & \sigma_{12} & \sigma_{13} & \cdots & \sigma_{1N} \\
\sigma_{21} & \sigma_2^2 & & & \\
\sigma_{31} & \sigma_{32} & \sigma_3^2 & & \\
& & \ddots & \ddots & \\
\sigma_{N1} & \sigma_{N2} & & \sigma_N^2 \\
\end{bmatrix}$$

errors of one case co-vary with errors from another case.
About the Error Variance matrix ...

- Because that’s a variance matrix, one simplification is immediate. It is necessary that this is symmetric.

\[
\text{Var}(\varepsilon) = \begin{bmatrix}
\sigma_1^2 & \sigma_{21} & \sigma_{31} & \cdots & \sigma_{N1} \\
\sigma_{21} & \sigma_2^2 & \sigma_{32} & \cdots & \sigma_{N2} \\
\sigma_{31} & \sigma_{32} & \sigma_3^2 & \cdots & \sigma_{N3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{N1} & \sigma_{N2} & \sigma_{N3} & \cdots & \sigma_N^2
\end{bmatrix}
\]

The matrix has \(N \times N\) elements, but we are only freely able to set the diagonal and one triangle. That means there are, at most, \(N(1 + N)/2\) parameters.

- In the end, we find that it is probably asking to much to expect precise estimates of all \(N(1 + N)/2\) parameters.

- The best we can do is develop some simple, interesting frameworks and estimate a few coefficients in them.
While I was thinking about that, I thought of this other Thing

Is your error term \(\{ \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N \} \) best thought of as

1. one variable with \(N \) random realizations, or
2. \(N \) random variables, each 1 draw from one of \(N \) random processes.

- \(N \) draws from the same process is the standard idea.
- When the assumption of “homoskedasticity” is violated, we definitely lean toward the 2nd interpretation.
- Sometimes people will talk about the thing we usually call the error term as \(N \) variates to emphasize this.
- There is a fine line between univariate and multivariate regression, then.
 - Univariate: a single column of outcomes modeled as 1 variable
While I was thinking about that, I thought of this other Thing ...

- Multivariate: several separate random processes under consideration within the same framework

\[\varepsilon = \{ \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N \}^T \] can be a multivariate draw from an \(N \) – dimensional Multivariate Normal Distribution. This is the most familiar \(N \) – dimensional distribution. There are 2 parameters, expected values and variance, in \(MVN(\mu, \Sigma) \).

\[
\mu = \begin{bmatrix}
\mu_1 \\
\mu_2 \\
\mu_3 \\
\vdots \\
\mu_N
\end{bmatrix}
\quad \text{and} \quad
\Sigma = \begin{bmatrix}
\sigma_1^2 & \sigma_{21} & \sigma_{31} & \ldots & \sigma_{N1} \\
\sigma_{21} & \sigma_2^2 & & \sigma_{N2} \\
\sigma_{31} & \sigma_{23} & \sigma_3^2 & \sigma_{N3} \\
\vdots & \vdots & \vdots & \ddots \\
\sigma_{N1} & \sigma_{N2} & \sigma_{N3} & \ldots & \sigma_N^2
\end{bmatrix}
\]
While I was thinking about that, I thought of this other Thing ...

- The full error variance matrix is overwhelming. We can layer on different assumptions, keeping the variance model as simple as possible.
- In OLS, you assert a very simple

\[
Var(\varepsilon) = \begin{bmatrix}
\sigma^2 & 0 & \cdots & 0 \\
0 & \sigma^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma^2
\end{bmatrix}
\]
While I was thinking about that, I thought of this other Thing ...

- Heteroskedasticity: ε’s are drawn from different distributions, but they are all uncorrelated with each other

$$
\text{Var}(\varepsilon) = \begin{bmatrix}
\sigma_1^2 & 0 & \cdots & 0 \\
0 & \sigma_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & & & \sigma_N^2
\end{bmatrix}
$$

That’s known as “heteroskedasticity”, the errors still have EV of 0 but the variances differ.
It is a little difficult to visualize GLS estimation, but it is easier to see what’s going on in its simpler cousin, WLS.

In a weighted least squares problem, we face a simpler challenge. Covariances = 0, but variances are heterogeneous

\[
\text{Var}(\varepsilon) = V = \begin{bmatrix}
\sigma_1^2 & 0 & 0 & 0 \\
0 & \sigma_2^2 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \sigma_N^2
\end{bmatrix}
\]

Notation Alert

Sometimes this matrix is referred to as Σ or Ω or some other Greek letter. I don’t mind writing out $\text{Var}(\varepsilon)$ when we have room to do it.
Weighted Least Squares …

- \(\hat{\beta}_{WLS} \) is a minimizer of the weighted sum of squared errors

\[
S(\beta) = (y - X\beta)^T V^{-1} (y - X\beta)
\]

which simplifies to a sum of \(N \) weighted squared terms:

\[
S(\beta) = \sum_{i}^{N} \left(\frac{1}{\sigma_i^2} \right) (y_i - X_i\beta)^2
\]

- Some authors will keep the weights inside the square. Let \(w_i = 1/\sigma_i \).

\[
S(\beta) = \sum_{i}^{N} (w_i(y_i - X_i\beta))^2 = \sum_{i}^{N} (w_i y_i - w_i X_i\beta)^2
\]

Reconceptualize the exercise. We multiply the data columns by a weighting factor, creating \(y_i^* = w_i y \) and \(X_i^* = w_i X_i \) which are fed to the OLS estimator.
Weighted Least Squares ...

- The R regression program `lm` includes a weight argument, to which we provide a column $1/\sigma_i^2$.
- The term “Feasible Weighted Least Squares” arises because we usually have to calculate estimates for the elements of V and then insert them into the formula.
- Sometimes you’ll get confused in this literature because some authors prefer to factor out a common element σ^2_ϵ. We could say

$$V = \sigma^2_\epsilon \begin{bmatrix}
\omega_1 & \omega_2 \\
\omega_1 & \omega_N \\
\omega_2 & \omega_N
\end{bmatrix}, \text{ where } \sum \omega_i = N, \text{ or } V = \sigma^2_\epsilon \Omega$$

- It is necessary that the trace of Ω must be N in order for these calculations to remain consistent with the OLS result for homogeneous variances.
Weighted Least Squares ...

- The benefit of this notation is not apparent until you start to read the Bates and DebRoy papers on maximum likelihood estimation of random effects models.

- Suppose we use OLS and ignore the problem of heterogeneous variance. The variance of the OLS estimator is:

\[
\text{Var}(\hat{\beta}_{OLS}) = [X^T X]^{-1} [X^T V X] [X^T X]^{-1}
\] \hspace{1cm} (15)

- This all supposes the weights are “known”, but usually they have to be guessed or estimated. If we happen to guess the var/covar matrix is \(V^* \), and use that in place of the true matrix \(V \), then the variance of that estimator ends up depending on both the wrongly supposed variance matrix and the true variance matrix (See Greene, Econometric Analysis, 6ed, p. 168).

\[
\text{Var}(\hat{\beta}) = [X^T V^*^{-1} X]^{-1} X^T V^*^{-1} V V^*^{-1} X [X^T V^*^{-1} X]^{-1}
\] \hspace{1cm} (16)

- White’s “robust” estimator of the variance is based on this setup
A More Elaborate Error Variance: Time Series AR(1) errors

- Time series analysis was the first area in stats to work on the implications of correlations across rows in a data set.
- The simple auto-correlated error model assumes that the error today is equal to a freshly drawn error for each row plus some left over error from yesterday
 \[\varepsilon_i = v_i + \rho \varepsilon_{i-1} \]
- That is known as an $AR(1)$ model, it leads to a variance matrix that depends on only 2 separate parameters, σ_v^2 and ρ.

\[
\text{Var}(\varepsilon) = \frac{\sigma_v^2}{(1 - \rho^2)} \\
\begin{bmatrix}
1 & \rho & \rho^2 & \ldots & \rho^{N-1} \\
\rho & 1 & \rho & \ldots & \rho^{N-2} \\
\rho^2 & \rho & 1 & \ldots & \rho^{N-3} \\
\vdots & \vdots & \ddots & \ddots & \rho \\
\rho^{N-1} & \rho^{N-2} & \rho^{N-3} & \ldots & 1
\end{bmatrix}
\]

- How to estimate that? GLS!
How does that get Estimated? Generalized Least Squares

- GLS. The objective changes from

$$(y - \hat{y})^T (y - \hat{y})$$

to this

$$(y - \hat{y})^T \text{Var}(e)^{-1} (y - \hat{y})$$

- The error variance plays the role of a weight, so high variance cases are given less weight.
How does that get Estimated? Generalized Least Squares

- Let capital sigma, $\Sigma = Var(\varepsilon)$.

- Aitken’s GLS estimator is surprisingly simple, the error matrix is placed into the middle of the usual answer in two places.

$$\hat{\beta}^{GLS} = (X^T\Sigma^{-1}X)^{-1}(X^T\Sigma^{-1}y)$$

- The variance of those estimates is

$$\text{Var}(\hat{\beta}^{GLS}) = \left(\frac{(y - X\hat{\beta})^T\Sigma^{-1}(y - X\hat{\beta})}{N}\right) (X^T\Sigma^{-1}X)^{-1}$$

- That first thing on the right is a variance adjusted error sum of squares, you’ll see it written out more simply as

$$\text{Var}(\hat{\beta}^{GLS}) = \hat{\sigma}_\varepsilon^2 (X^T\Sigma^{-1}X)^{-1}$$
Two challenges

1. Computation
 - Success requires the creation and inversion of an $N \times N$ variance matrix.
 - On a modern “large” data set, that can be computationally intensive. We would look for decompositions and abstractions to move this along.

2. Usually there are parameters in Σ that must be estimated. This leads to an iterative fitting process. The usual description is as follows
 - Estimate $\hat{\beta}$
 - Estimate $\text{Var}(e)$ from the residuals
 - Re-estimate $\hat{\beta}$, etc.
Matrix View of Multiple Regression

Cholesky Root application

- Cholesky decomposition (the “square root” of a matrix): $V = R^T R$, where R is an upper triangular matrix. Replace V in the sum of squares with $R^T R$

- $S(\beta) = (y - X \beta)^T (R^T R)^{-1} (y - X \beta) = (y - X \beta)^T R^{-1} R^{-T} (y - X \beta)$, where R^{-T} means $(R^T)^{-1}$.

- Which rearranges as $S(\beta) = (R^{-T} y - R^{-T} X \beta)^T (R^{-T} y - R^{-T} X \beta)$.

- Basically, this is creating new weighted observations $y^* = R^{-T} y$ and $X^* = R^{-T} X$

 - and then we run the regression to minimize $S(\beta) = (y^* - X^* \beta)^T (y^* - X^* \beta)$

- The key thing about this, as far at MLM is concerned, is that once V is estimated, we can insert that into the calculation of $\hat{\beta}_{GLS}$

- If we estimate V, then $\hat{\beta}_{GLS}$ is a known thing, so we do not need to think of maximum likelihood estimates for (V, β). Rather, we just think of maximizing $(V, \hat{\beta}(V))$. V is the only variable we need to concentrate on. This is a “profiled Likelihood” function.