EXAMINING FACTORIAL DESIGNS WITH STRUCTURAL EQUATION MODELING (SEM)

Stephen D. Short
Alexander M. Schoemann
University of Kansas
Center for Research Methods and Data Analysis (CRMDA)
crmda.ku.edu

Presented January 19th, 2013 at the annual meeting for the Society for Personality and Social Psychology (SPSP)
Overview

- Factorial designs in ANOVA vs. SEM
- Multiple group models
- Steps for examining latent means
 - Nested model comparison
 - Testing interactions via contrast codes
- 3x2 Example
- Conclusions

Note. Presentation slides and example analyses are available online at http://crmda.ku.edu/presentations
Factorial Designs in ANOVA

- Normally distributed dependent variable (DV)
- Homogeneity of variances
 - Sphericity in repeated measures
- No measurement error
- Measurement invariance
Advantages of SEM

- Robust estimators can accommodate nonnormal data (Fan & Hancock, 2012)

- Model measurement error
 - Produces larger effect size

- Test measurement invariance across groups and/or time
 - Invariance is assumed in MIMIC models

- Similar or more power than MANOVA with multiple DVs (see Hancock, Lawrence, & Nevitt, 2000)
Multiple Group Models

- Specify a measurement model (i.e., CFA) for each group
 - If the design contains repeated measures, then only a model for each level of the between-subjects IV is needed

- Each model is estimated separately, but simultaneously
 - Model fit statistics are influenced by all groups

- Examine measurement invariance
 - Factor loading invariance (e.g., “weak invariance”)
 - Indicator intercept invariance (e.g., “strong invariance”)

Example 2x2 Between Subjects

Multiple Group Model

<table>
<thead>
<tr>
<th>Factor B</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 1:</td>
<td>Group 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3:</td>
<td>Group 4:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Factor A**: η
- **Factor B**: η
- **Groups**: Group 1, Group 2, Group 3, Group 4
Steps for Examining Latent Means

- Omnibus Test
 - Constrain means of the same construct to be equal across all levels of each factor

- Main Effects
 - Factor A: Constrain means equal across levels of Factor A
 - Factor B: Constrain means equal across levels of Factor B

- TIP: Check df for the constrained model to ensure the constraints were imposed.
Nested Model Comparisons

- A model with latent means constrained to be equal is considered “nested” within the strong invariance model where the means are freely estimated.
- Nested models can be compared via a χ^2 difference test*, where:
 - $\Delta \chi^2 = \chi^2_{\text{Constrained}} - \chi^2_{\text{Strong invariance}}$
 - $\Delta df = df_{\text{Constrained}} - df_{\text{Strong invariance}}$
- If $\Delta \chi^2$ is significant, then the model constraint is NOT supported.

*Note. The above holds for maximum likelihood (ML) estimation. If robust maximum likelihood or weighted least squares estimators are used, the scaling factor must be incorporated (see Satorra & Bentler, 2001).
Examining Factorial Interaction

- Omnibus and main effect tests of latent means ignore a possible Factor A x Factor B interaction.

- Similar to ANOVA, orthogonal interaction contrast codes can be used as model constraints on latent means.

- Each contrast adds one degree of freedom (df).
Examining Factorial Interaction

- Number of necessary contrasts $= (J-1)(K-1)$, where:
 - $J =$ # levels in Factor A
 - $K =$ # levels in Factor B

- To test for interaction, estimate a model with a full set of interaction contrasts and compare to the strong invariance model via χ^2 difference test
Orthogonal Interaction Contrast Codes

- **2x2 Design**

<table>
<thead>
<tr>
<th>Factor A</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor B</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>Int. Contrast 1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

 Note. Remember to set each contrast to equal 0 in your model.

- **2x3 Design**

<table>
<thead>
<tr>
<th>Factor A</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor B</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>Int. Contrast 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Int. Contrast 2</td>
<td>1</td>
<td>-2</td>
</tr>
</tbody>
</table>

- **3x3 Design**

<table>
<thead>
<tr>
<th>Factor A</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Contrast 1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Int. Contrast 2</td>
<td>1</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>Int. Contrast 3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Int. Contrast 4</td>
<td>1</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>
A 3x2 Mixed Design Example

- Does undergraduate students’ Creationist Reasoning change after completing a college science course?
- Examined three courses at the beginning and end of the semester
 - Intro Biology for Biology Majors ($N = 631$)
 - Evolutionary Psychology ($N = 65$)
 - Intro to U.S. Politics ($N = 366$) Control Group
Creationist Reasoning (CR) (see Hawley et al., 2011)
- Items on 1(Strongly Disagree) to 7(Strongly Agree) scale
- Higher responses = higher CR

CR is comprised of several subscales
- Intelligent design fallacies (IDF)
- Young-earth creationism (YEC)
- Moral objections (MO)
- Social objections (SO)
- Distrust of the scientific enterprise (DSE)
Example: Creationist Reasoning CFA

Note. Indicator residuals are correlated for repeated measures.
Example: Multiple Group CFA

Group 1: Intro U.S. Politics

Group 2: Intro Bio

Group 3: Evo Psyc
Example: Creationist Reasoning Latent Means

<table>
<thead>
<tr>
<th></th>
<th>Political Science</th>
<th>Biology</th>
<th>Evolutionary Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>3.216</td>
<td>3.060</td>
<td>2.372</td>
</tr>
<tr>
<td>(0.922)</td>
<td>(0.989)</td>
<td>(0.843)</td>
<td></td>
</tr>
<tr>
<td>Time 2</td>
<td>3.219</td>
<td>3.079</td>
<td>2.027</td>
</tr>
<tr>
<td>(1.001)</td>
<td>(0.994)</td>
<td>(0.677)</td>
<td></td>
</tr>
</tbody>
</table>

Note. Means (standard deviations). Effects-coding method of model identification was used to maintain the original scale of the indicators (see Little, Slegers, & Card, 2006)
Example: Mplus Code for Interaction

MODEL:
!Time 1;
CreaReas BY IDF* (L1)
 YEC (L2)
 MoralObj (L3)
 SocObj (L4)
 DisTrust (L5);

!Time 2 equate loadings for weak invariance;
ZCreaReas BY ZIDF* (L1)
 ZYEC (L2)
 ZMoralObj (L3)
 ZSocObj (L4)
 ZDistrust (L5);

!Correlate Time1 & Time2 Residuals;
IDF WITH ZIDF;
YEC WITH ZYEC;
MoralObj WITH ZMoralObj;
SocObj WITH ZSocObj;
DisTrust WITH ZDistrust;

!Correlate Time1 & Time2 Residuals;
IDF WITH ZIDF;
YEC WITH ZYEC;
MoralObj WITH ZMoralObj;
SocObj WITH ZSocObj;
DisTrust WITH ZDistrust;

!Create interaction contrast codes;
NEW (C1 C2);
C1 = A1-A3-A4+A6;

MODEL Pols:
!Label means for model constraint;
[CreaReas] (A1);
[ZCreaReas] (A2);

MODEL Bio:
[CreaReas] (A3);
[ZCreaReas] (A4);

MODEL EvoPsyc:
[CreaReas] (A5);
[ZCreaReas] (A6);
Example: Test of Latent Means Results

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>$\Delta \chi^2$</th>
<th>Δ df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Invariance</td>
<td>586.72</td>
<td>127</td>
<td><.001</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Latent Mean Invariance (Omnibus)</td>
<td>683.18</td>
<td>132</td>
<td><.001</td>
<td>96.46</td>
<td>5</td>
<td><.001</td>
</tr>
<tr>
<td>Interaction (via contrast codes)</td>
<td>630.11</td>
<td>129</td>
<td><.001</td>
<td>43.39</td>
<td>2</td>
<td><.001</td>
</tr>
<tr>
<td>Group</td>
<td>682.62</td>
<td>131</td>
<td><.001</td>
<td>95.90</td>
<td>4</td>
<td><.001</td>
</tr>
<tr>
<td>Time</td>
<td>615.04</td>
<td>130</td>
<td><.001</td>
<td>28.32</td>
<td>3</td>
<td><.001</td>
</tr>
<tr>
<td>Pols</td>
<td>586.72</td>
<td>128</td>
<td><.001</td>
<td>0.004</td>
<td>1</td>
<td>0.950</td>
</tr>
<tr>
<td>Bio</td>
<td>587.14</td>
<td>128</td>
<td><.001</td>
<td>0.42</td>
<td>1</td>
<td>0.519</td>
</tr>
<tr>
<td>Evo Psyc</td>
<td>614.62</td>
<td>128</td>
<td><.001</td>
<td>27.90</td>
<td>1</td>
<td><.001</td>
</tr>
</tbody>
</table>

- Significant Group X Time interaction, $\Delta \chi^2 (2) = 43.39$, $p < .001$
- Significant simple main effect for Evolutionary Psychology course $\Delta \chi^2 (1) = 27.90$, $p < .001$
 - CR significantly decreased from Time 1 ($A = 2.37$) to Time 2 ($A = 2.03$)
Example: Creationist Reasoning Interaction

- Political Science
- Biology
- Evolutionary Psychology
Disadvantages

- More difficult to implement than ANOVA
- Large factorial designs require many contrasts
 - \((J-1)(K-1)\) contrasts needed (same \(df\) as interaction in ANOVA)
- Requires larger sample sizes
Additional Advantages

- Can be used for between, within, or mixed subjects designs
- Multiple dependent variables (DVs)
 - e.g., MANOVA designs
- Covariates
 - e.g., ANCOVA or MANCOVA designs
- Allows for more complex hypotheses
 - e.g., moderated mediation
- May provide greater statistical power over MANOVA (see Hancock, Lawrence, & Nevitt, 2000)
Thank You

Stephen D. Short, M. A.
Quantitative Psychology Doctoral Program
Center for Research Methods and Data Analysis
University of Kansas
sdshort@ku.edu

- Presentation slides and example analyses are available online at http://crmda.ku.edu/presentations
- Special thanks to Patricia Hawley, Todd Little, & Pascal Deboeck

