Power Analysis

Ben Kite
KU CRMDA
2015 Summer Methodology Institute

Created by Terrence D. Jorgensen, 2014
Recall Hypothesis Testing?

• Null Hypothesis Significance Testing (NHST) is the most common application in social science
 – Frame research hypothesis as an “alternative” (H_1) to a “null” hypothesis (H_0) that is given preference
 – Design study to test H_0, collect data
 • Reject H_0 when data are uncommon if H_0 is true
 • If you fail to reject H_0, you can’t reject H_0 as a plausible explanation for the observed data
Examples of H_0

• Effect of wealth on electricity demand is $\beta_1 = 7$

 Electricity Demand = $\beta_0 + \beta_1 \text{Wealth} + \epsilon$

 – Estimate from data is $\hat{\beta}_1 = 10$

 – Is 10 far enough from 7 for H_0 to be rejected?

• Gender difference is $\mu_{\text{Men}} - \mu_{\text{Women}} = \mu_{\text{diff}} = 0$

 – Estimate is $\hat{\mu}_{\text{diff}} = -5$

 – Is the observed difference big enough to convince us that H_0 is untenable?
Sampling Distribution

• Estimates vary from sample to sample
• If H_0 is true, would it be terribly unusual to observe the data (i.e., the statistic) we observed? (p value)
• Any observations in the critical region beyond the red confidence limits are sufficient evidence to reject H_0
What Is Statistical Power?

• The probability of rejecting H_0, on the condition that it is FALSE
 – Only makes sense in the context of NHST

• Affected by 4 factors
 – Rejection criterion (α level)
 – Sample size (N)
 – Sampling variability (SD, σ^2)
 – Effect size (the degree to which H_0 is false)
What If Result Is Not “Significant”?

• $H_0: \beta = 4$
 From data: $\hat{\beta} = 5$, $SE = 0.6$

• Estimated sampling distribution of β is not different enough from H_0 to rule it out
 – Does that mean that 4 was the true value of β?
 – No, it just means we can’t reject $H_0: \beta = 4$

• If H_0 were wrong, what could you change to reject it?
 – Collect more data
 – More liberal criterion ($\alpha = .10$)
 – Change H_0 to $\beta = 2$. We can reject that!
Motivation Behind Power Analyses

• Important part of research proposals
 – How many cases are required to reject your H_0?
 – Funding agencies & dissertation advisors want to make sure they aren’t wasting time & money

• Think backwards
 – Imagine a completed study, with data
 – MUST write down the actual model to be estimated
 – With “made up data” of size N, using carefully chosen population parameters, how often is a “significant” effect detected?
 – If not, how large must N be to detect the effect at least as often as a minimum threshold?
Real-Life Research Example

• Researcher collects data on $N = 10$ people to find out whether tobacco causes cancer
 – Statistical procedure says there’s no relationship, so we can’t reject H_0 of no relationship
 – Suppose the effect of tobacco on cancer risk is actually present, but we missed it by not collecting enough data

• 80% is a customary threshold for “enough” power
 – We should design experiments so the power ≥ 0.8
 • Measure variables with little variance; collect large N

• Effect must be “large” if it is to be detected with small N
 – If effect is “small,” then we increase N to increase chances of finding a “significant” result (i.e., of rejecting H_0)
How Much Power Do We Need?

• 80% is a customary threshold for what is considered “enough” power
 – We should design experiments so the power ≥ 0.8
 • Measure variables with little variance
 • Collect large N

• To detect with small N, effect must be “large”
 – If effect is “small,” then we increase N to increase chances of finding a “significant” result (i.e., of rejecting H_0)
Effect Sizes

• Raw effect sizes are just the parameter estimate minus the null hypothesized value
 – Regression slopes ($\hat{\beta} - \beta_0$)
 – Mean-differences between groups ($\hat{\mu}_{\text{Diff}} - \mu_0$)
 – Often can divide difference by SE for a t statistic

• Let’s look at the R syntax
 – Continuing the example from this morning’s workshop on Monte Carlo Simulation
 • See PowerAnalysis-01.R (or accompanying HTML file)
Effect Sizes

• Effect Size = magnitude of difference between a parameter estimate and its \(H_0 \) value (e.g., \(\hat{\mu} - \mu_0 \))

• APA requires “standardized” effect sizes
 – Seeking a number that is generic across contexts
 – Supposed to represent “practical” significance, but effects in units of SD or proportions are not always intuitive or useful

• Cohen (1988) pioneered the most frequently used criteria for describing effect sizes and estimating power among social scientists
 – Back to R! (see also G*Power)
Monte Carlo Power Analysis

• A Monte Carlo study where:
 – The outcome of interest is statistical power
 – The main manipulated factor is N

• Useful because analytical methods only cover simple cases
 – Power = the proportion of samples in a condition for which H_0 was rejected

• Can manipulate other factors
 – Effect size, alpha, variability, missing data, etc.
Free Power Analysis Resources

• G*Power (http://www.gpower.hhu.de/en.html)
 – Linear Models (regression, correlation, t test, ANOVA, ANCOVA, MANOVA, MANCOVA)
 – Some generalized linear models (Poisson or logistic regression)
 – Contingency tables (χ^2, McNemar’s test)
 – Proportion tests
 – The user’s manual on the website is easy to read (lot’s of pictures and easy instructions)
Free Power Analysis Resources

- Multilevel Modeling power analysis software
 - Optimal Design (http://sitemaker.umich.edu/group-based/optimal_design_software)
 - Comprehensive, graphical, like G*Power for MLM
 - PINT (http://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT)
 - Uses analytical approximation, 2-level models only
 - MLPowSim (http://www.bristol.ac.uk/cmm/software/mlpowsim/)
 - Makers of MLwiN (among the best MLM software)
 - You input characteristics of your data (summary stats of predictors, sample size at each level) and population parameters, then MLPowSim writes an R script for Monte Carlo simulation-based power analysis
CRMDA Resources

• For SEMs (and more), see KUant Guide #12: Monte Carlo Simulation in Mplus
 – See http://crmda.ku.edu/kuant-guides
 – This is primarily SEM software (not free), but it can also be used for anything that can be framed as a
 • Linear model (t test, ANOVA, regression)
 • Generalized linear model (Poisson or logistic regression)
 • Multilevel / mixed-effects model
 – Just need to know how to write model in Mplus syntax
• Example provided at bottom of today’s R syntax